

PROTOCOL FOR WHOLE GENOME SEQUENCING AND BIOINFORMATIC ANALYSIS OF BACTERIAL ISOLATES RELATED TO THE **EU** MONITORING OF ANTIMICROBIAL RESISTANCE

AUTHORED BY THE **EURL-AR**

Jette Sejer Kjeldgaard

jetk@food.dtu.dk

National Food Institute, DTU
European Union Reference Lab on
Antimicrobial Resistance

https://www.eurl-ar.eu/wgs.aspx

Background for protocol

- The Commission Implementing **Decision 2020/1729** on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria
- Authorising the use of WGS as an alternative method for prediction of resistance in relation to the specific monitoring of ESBL- or AmpC- or carbapenemase-producing E. coli and Salmonella
- The EURL-AR has produced the present protocol for guidance in these matters
- The whole genome sequencing (WGS) processes divides into three overall processes:
 - Bacterial isolation, DNA preparation and DNA quality and quantity assessment
 - Library preparation, library quality and quantity assessment and sequencing
 - Sequence QC and bioinformatics analyses

Purpose of protocol

- Ensure that WGS data reported to EFSA is obtained in a harmonised and comparable way
 - Less important
 - How the bacteria, DNA and sequences are obtained
 - Very imporant
 - Assure the sequence quality control
 - Using the same QC criteria
 - Harmonised AMR gene analysis
 - using the same methods and settings for analysis
 - Reporting adequate data

Table of Contents

Important notes 4
Protocol 5
Bacterial isolation 5
DNA preparation and quality assessment5
Library preparation 6
Sequencing6
Assessment of the genomic sequence quality7
AMR gene and point mutation prediction9
Additional analysis and sub-typing10
Proficiency test
Online training
References11
Abbreviations and acronyms12
Links13

Links Generic protocol – not one method that fits all

Table 2: Collection of links referred to in the protocol, including last date of accession

		Last
Link#	Method or content	accessed
Link 1	Illumina website	December
	https://www.illumina.com/	2020
Link 2	Oxford Nanopore website	December
	https://nanoporetech.com/products	2020
Link 3	Thermofisher website	December
	https://www.thermofisher.com/dk/en/home/life-science/sequencing/next-generation-	2020
	sequencing/ion-torrent-next-generation-sequencing-products-services.html	
Link 4	EURL-AR website – Inter-EURLs WG on NGS	December
	https://www.eurl-ar.eu/inter-eurls-working-group-on-ngs.aspx	2020
Link 5	Document on bioinformatics tools for basic analysis of Next Generation Sequencing	December
	data	2020
	https://www.iss.it/documents/20126/0/Bioinformatics tools for basic analysis of Next Generation Seq	
	<u>uencing_data_Del4.pdf/02c8f77b-db2c-6b8d-e2ba-416144f89f7e?t=1602603602556</u>	
Link 6	Methods for isolation of ESBL, ampC and carbapenemase-producing E. coli from meat	December
	and caecal samples	2020
	https://www.eurl-ar.eu/protocols.aspx	D
Link 7	Method for detection of Salmonella in food and animal feed	December
1:1-0	https://www.eurlsalmonella.eu/publications/eurl-manual	2020
Link 8	Method for detection of Campylobacter	December
	https://www.sva.se/en/about-us/eurl-campylobacter/laboratory-procedures/	2020
Link 9	DNA extraction protocol EasyDNA	December
	https://assets.thermofisher.com/TFS-Assets/LSG/manuals/easydna_man.pdf	2020
Link 10	Automated DNA extraction Magna Pure	December
	https://lifescience.roche.com/en_dk/products/magna-pure-96-instrument-382411-1.html	2020
Link 11	Overview of applications of Qubit	December
	Overview of applications of Qubit www.invitrogen.com/qubit	December 2020
Link 11 Link 12	Overview of applications of Qubit www.invitrogen.com/qubit Protocol for Qubit 4 DNA quantification	December 2020 December
	Overview of applications of Qubit www.invitrogen.com/qubit	December 2020

Links to protocols

- Continuously updated
- Dependent on lab
 - Equipment
 - Throughput
 - Prerequisites

Table of Contents

Important notes 4
Protocol 5
Bacterial isolation 5
DNA preparation and quality assessment5
Library preparation 6
Sequencing6
Assessment of the genomic sequence quality7
AMR gene and point mutation prediction9
Additional analysis and sub-typing 10
Proficiency test
Online training
References11
Abbreviations and acronyms12
Links13

- Methods for isolation of ESBL, ampC and carbapenemase-producing E. coli from meat and caecal samples (EURL-AR)
- Method for detection of Salmonella in food and animal feed (EURL-Salmonella)
 - Ensure purity and correct species
- Examples of DNA extraction kits
 - Laboratory routine methods
- Examples of DNA quality/quantity assessment

DTU

Library preparation, library quality and quantity assessment and sequencing

- Dependent on the laboratory equipment
 - Majority using Illumina sequencing equipment

At present the EURL-AR recommends Illumina sequencing

- QC of sequences
- Tools for analysis
- Suggestion for library preparation
- Quantification and QC of library prep
- Illumina instrument-specific sequencing reagents, flow cells, cluster generation reagents
 - MiSeq and NextSeq

Sequence QC and bioinformatics analyses

- Trimming of raw reads
 - Can be performed, but is not crucial for Illumina sequences
- File format
 - it is recommended to perform the assembly of fastq files into fasta files
 - part of the quality control
- Check for contamination
 - E.g. using KmerFinder for species determination and look into QC parameters
- Assembly
 - Using SPAdes 3.14 or newer
 - Accessible as CGE tool with output of important QC parameters
 - https://cge.cbs.dtu.dk/services/SPAdes-3.14/

QC parameters

- The process of raw reads assembly into contigs outputs a range of QC paramters
- number of reads
- depth of coverage
- average read length (as specified by the sequencing equipment)
- size of assembled genome (+/- 0.5 million bases deviation from expected size)
- total number of contigs (<500 contigs)
- **N50** (>30.000 bp)

Assembly with SPAdes v 3.14

- The SPAdes 3.14 tool will output the contigs file (.fasta) and additionally a .txt file with some basic statistics and QC parameters.
- The output file contains data on:
- Input files:
 - Total number of reads
 - Total number of bases
- Contigs file :
 - Number of contigs
 - Number of bases (assembled genome size)
 - N50
- Using this output, it is also possible to calculate the average read length= Number of bases/Number of reads (input files)

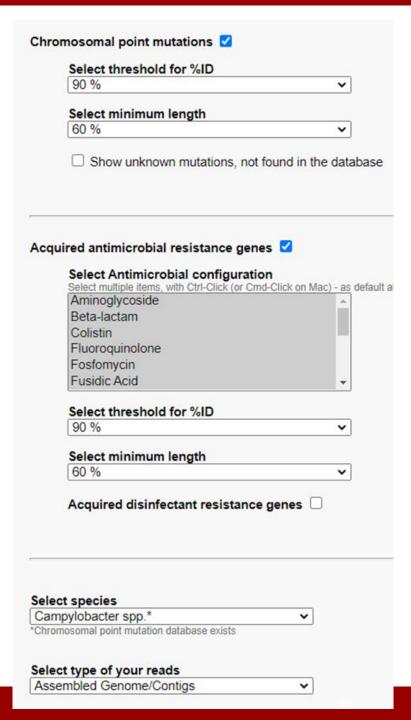
AMR gene and point mutation prediction

- The EURL-AR recommends using ResFinder v4.1 or newer
- For harmonisation of the AMR data reported by different laboratories, it is important to use the defined settings.
- The EURL-AR recommends running the ResFinder analysis on the contigs assembly files (.fasta) using specific settings
- ResFinder can be run as a web-tool (CGE) or as local installation (available on BitBucket)
 - Web-tool limited to analysing one sequence at a time

ResFinder settings

For chromosomal point mutations:

- Select threshold for % ID: 90 %
- Select minimum length: 60 %


For acquired antimicrobial resistance genes:

Select all antimicrobial databases (default setting)

- Select threshold for % ID: 90 %
- Select minimum length: **60** %

Select species: as appropriate

Select type of your reads: Assembled genome/Contigs

Data to report to EFSA

- Beyond the sampling and isolate data, the results reported in relation to Decision 2020/1729 should include:
- Date of sequencing
- Sequencing technology used
- Library preparation used
- Version of the predictive tool (ResFinder)
- AMR-conferring genes data:
 - Gene name
 - Output information on % identity
 - Output information on % coverage (length)
- Date of ResFinder analysis
- The protocol will be added a template sheet for collection of metadata, including examples of how to report data.

Questions and discussion?