Detection of ESBL and carbapenemases in Gramnegatives

Hiba ALMIR, PhD Technical University of Denmark 16 May 2024

- Background
- ESBL detection methods
- CRE detection methods
- Q&A
- Post-webinar assignment

- ESBL: Extended-Spectrum Beta-Lactamase
- AmpC: Beta-lactamase of the AmpC-type
- Carbapenemase

...ase = suffix to form enzyme name (added to the end of the substrate name)

- Which bacteria carry beta-lactamases?
 - Found in many types of bacteria mainly gram-negative. Some examples are:

Enterobacterales		Non-Enterobacterales	Gram-positive	
•	Escherichia coli	Pseudomonas aeruginosa	• Staphlococcus aureus	
•	Salmonella enterica	Pseudomonas putida	-MRSA	
•	Klebsiella pneumoniae	• Acinetobacter spp.	• Others	
•	Klebsiella oxytoca	Neisseria gonorrheae		
•	Citrobacter freundii	Haemophilus influenzae		
•	Enterobacter spp.			
•	Proteus mirabilis	• Campylobacter spp.		
•	Serratia marcescens			

• Beta-lactam antibiotics:

Class	Group	Effect	Examples (generation)
	Penicillins	Narrow spectrum	Benzylpenicillin (1. gen) Oxacillin (2. gen)
		Extended spectrum	Amoxicillin (3. gen) Piperacillin (4. gen)
	Cephalosporins		Cefalotin (1. gen)/ Cefoxitin (2. gen)
Beta-lactams	(Cephamycins) (Cephems)	Extended spectrum	Cefotaxime, Ceftazidime (3. gen)
			Cefepime (4. gen)
		MRSA	Ceftaroline (5. gen)
		MDR	Cefiderocol (Others - siderophore)
	Monobactams		Aztreonam
	Combinations with <u>beta-lactam</u> inhibitors	ESBL	Cefotaxime or ceftazidime with <u>clavulanic acid</u>
	Carbapenems	MDR	Meropenem

- Carbapenem antibiotics:
 - Carbapenems are β -lactam antibiotics similar to penicillin
 - meropenem, imipenem, ertapenem, doripenem
 - Carbapenems are highly resistant to most β-lactamases
 - Broad spectrum of activity
 - Both Gram-positive and Gram-negative bacteria

	Strep spp. & MSSA	Enterobacteriales	Pseudomonads, Acinetoobacter spp	Anaerobes
Meropenem	+	+	+	+
Imipenem	+	+	+	+
Ertapenem	+	+	Limited activity	+
Doripenem	+	+	+	+

- Which bacteria carry Carbapenemases?
 - Carbapenemases are mainly found in Gram-negative bacteria

Enterobacteriales		Non-Enterobacteriales				
•	Klebsiella pneumoniae	Pseudomonas aeruginosa				
•	Klebsiella oxytoca	Pseudomonas putida				
•	Escherichia coli	• Acinetobacter spp.				
•	Citrobacter freundi					
•	Enterobacter aerogenes					
•	Enterobacter cloacae					
•	Enterobacter gergoviae					
•	Proteus mirabilis					
•	Salmonella enterica					
•	Serratia marcescens					

- Carbapenemase-producing *Enterobacteriaceae* (CPE):
 - Gram negative bacteria that can live in human and animal gut
 - Klebsiella spp., E. coli, Enterobacter spp.
 - Involved in a variety of infections
 - Bacteremia, urinary tract infections, intra-abdominal infections and pneumonia
 - High mortality rates associated with CPE infections as high as 57%*
 - Urgent need of new treatment strategies for treating CPE infections

- Screening methods
 - Broth/agar dilution or disk diffusion method
 - Selective media
- Phenotypic confirmatory methods
- Genotypic confirmatory methods

2024

ESBL screening methods

Method	Antibiotic	Conduct ESBL-testing if		
Broth or agar dilution ¹	Cefotaxime/ceftriaxone AND Ceftazidime	MIC >1 mg/L for either agen		
	Cefpodoxime	MIC >1 mg/L		
Disk diffusion ¹	Cefotaxime (5 µg) or Ceftriaxone (30 µg) AND Ceftazidime (10 µg)	Inhibition zone <21 mm Inhibition zone <23 mm Inhibition zone <22 mm		
	Cefpdoxime (10 µg)	Inhibition zone <21 mm		

¹ With all methods test either (i) cefotaxime or ceftriaxone AND ceftazidime OR (ii) cefpodoxime alone.

EQAsia

2024

Figure 1. Algorithm for phenotypic detection of ESBLs

¹ If cefoxitin has been tested and has an MIC >8 mg/L, perform cefepime+/- clavulanic acid confirmation test
² Cannot be determined as either positive or negative (e.g. if a gradient diffusion strip cannot be read due to growth beyond the MIC range of the strip or there is no clear synergy in combination-disk and double-disk synergy tests). In confirmation with cefepime +/- clavulanic acid is still indeterminate, genotypic testing is required.

EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2,0, July 2017

- Culture media in-house (with cefotaxime and/or ceftazidime)
- Commercial ready-to-use media plates
- Chromogenic media (with cefpodoxime)

ESBL Phenotypic confirmatory methods

- 1. Combination disk test (CDT)
- 2. Double-disk synergy test (DDST)
- 3. Gradient method Etest ESBL
- 4. Broth microdilution

Combination disk test (CDT)

- Disk containing cephalosporin alone (cefotaxime, ceftazidime, cefepime) and in combination with clavulanic acid
- Compare inhibition zones

ceftazidime 30µg

cefotaxime 30µg

ceftazidime 30µg + clavulanic acid 10µg

cefotaxime 30µg + clavulanic acid 10µg

positive if ≥5 mm increase in inhibition zone with clavulanic acid

Double-disk synergy test (DDST)

- Disk containing cephalosporin (cefotaxime, ceftazidime, cefepime) is applied next to disk with clavulanic acid (amoxicillin-clavulanic acid)
- Shorter distance between disks 20mm center-to-center

*: May be reduced to 15mm or expanded to 30mm if high or low resistance level. EUCAST uses lower disk content → re-evaluation needed!

 positive if inhibition zone around cephalosporin disk is enhanced in the direction of the disk with clavulanic acid

Gradient method – Etest ESBL

- 2-sided strips containing gradients of cefotaxime, ceftazidime or cefepime either alone or in combination with clavulanic acid
- according manufacturer's instruction

MIC ratio: CT/CTL = 1.5/0.047 = 32

• positive if MIC ratio \geq 8 (MIC reduced by three doubling dilution steps)

Gradient method – Etest ESBL

- according manufacturer's instruction
- 2-sided strips containing gradients of cefotaxime, ceftazidime or cefepime either alone or in combination with clavulanic acid

- positive if MIC ratio \geq 8 (MIC reduced by three doubling dilution steps)
- or phantom zone/deformed ellipse is present
- indeterminate if growth beyond the MIC range of the strip

False negative results

• ESBL presence masked due to high-level expression of AmpC β-lactamases

 clear resistance to 3rd generation cephalosporins + to cephamycins e.g. cefoxitin MIC > 8mg/L (except ACC AmpC β-lactamases)

Perform **confirmatory test** with **cefepime** as indicator cephalosporin or use **cloxacillin**

Cefepime: usually not hydrolyzed by AmpC β-lactamases → CDT, DDST, Etest, broth microdilution Cloxacillin: good inhibitor of AmpC enzymes → CDT with disk containing cloxacillin or CDT/DDST with agar supplemented with cloxacillin

 ESBL presence masked by carbapenemases such as MBLs or KPCs (not OXA's) and/or severe permeability defects

False positive results

- Klebsiella oxytoca with hyperproduction of chromosomal K1 or OXA-like βlactamases
- Proteus vulgaris, Citrobacter koseri, Kluyvera spp due to chromosomal βlactamases inhibited by clavulanic acid
- Strains with hyperproduction of SHV-1, TEM-1 or OXA-1-like broad-spectrum β-lactamases combined with alterered permeability

ESBL Genotypic confirmatory methods

- PCR (and sequencing) → epidemiological information is needed to decide which genes to target
- Microarrays → limitations in the number of resistance genes targeted
- WGS \rightarrow well curated and complete databases are needed

ESBL Genotypic confirmatory methods

- Beta-lactamases are numerous!
- ESBLs
 - CTX-M
 - TEMSHV
 - (OXA)
 -
- AmpCs
 - cAmpC

 - ACCDHA
 - FOX
 -

Correct nomenclature:					
Gene	Protein				
bla _{CTX-M-1}	CTX-M-1				
bla _{CMY-2}	CMY-2				
etc	etc				

- Each type of enzyme is further divided into variants: E.g. CTX-M-1, CTX-M-2...
- You can find a database of beta-lactam genes here: <u>http://bldb.eu/</u>

CRE Detection methods

- Screening methods
 - Broth/agar dilution or disk diffusion method
 - Selective media
- Phenotypic confirmatory methods
- Genotypic confirmatory methods

Broth/agar dilution or disk diffusion method

	N	1IC breal	<point (mg="" l)<="" th=""><th colspan="3">Zone diameter breakpoint (mm with 10µg disks</th></point>	Zone diameter breakpoint (mm with 10µg disks		
	S≤	R>		S≥	R<	
Ertapenem	0.5	0.5		23	23	
Imipenem	2	4		22	19	
Meropenem	2	8		22	16	

Broth/agar dilution or disk diffusion method

	MIC breakpoint			nt (mg/L) Zone diameter br with 10μ		
	S≤	R>	cut-off	S≥	R<	cut-off
Ertapenem	0.5	0.5	→ 0.125		25	∢-25
Meropenem	2	8	> 0.125	22	16	< 28*

Use **ECOFF** values

Ertapenem: excellent sensitivity but poor specificity, especially in species such as *Enterobacter spp.* (relative instability to ESBLs and AmpC in combination with porin loss

 \rightarrow not recommended for routine use

Imipenem: the separation between the wild-type and carbapenemase-producers is relatively poor

 \rightarrow not recommended for use as a stand-alone screening test compound

Meropenem: best balance of sensitivity and specificity

* Isolates with 25-27 mm only need to be investigated for carbapenemase production if they are resistant to piperacillin/tazobactam and/or temocillin

2024

CRE screening

CRE screening methods

- Culture media in-house (with meropenem)
- Commercial ready-to-use media plates
- Chromogenic media

• meropenem (10µg) +/- various inhibitors

Table 2. Interpretation of phenotypic tests (carbapenemases in **bold type**) by diffusion methods with disks or tablets. The exact definitions of synergy are provided in package inserts for the various commercial products.

B-lactamase	Synergy obse (mm) with 10	Temocillin MIC >128			
	DPA/EDTA	APBA/PBA	DPA+APBA	CLX	mg/L or zone diameter <11 mm
MBL	+	-	-	-	Variable ¹
КРС	-	+	-	-	Variable ¹
MBL + KPC ²	Variable	Variable	+	-	Variable1
OXA-48-like	-	-	-	-	Yes
AmpC + porin loss	-	+	-	+	Variable ¹
ESBL + porin loss	-	-	-	-	No

EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2,0, July 2017

• meropenem (10µg) +/- various inhibitors

EQAsia

Meropenem 10µg

Meropenem 10µg + DPA 1000µg Meropenem 10µg + cloxacillin 750µg

Meropenem 10µg + APBA/PBA 600µg

Interpretation criteria?

Compare inhibition zone diameter of meropenem with meropenem + inhibitor

EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2,0, July 2017

- rapid (2 hours), cheap, high sensitivity and specificity biochemical test
 - change of phenol red color (red to yellow) after hydrolysis of imipenem by carbapenemase

Carbapenem Inactivation Method (CIM)

Low-cost alternative to the CarbaNP test

CRE Genotypic confirmatory methods

- Multiplex PCR
- Real-time PCR
- Cepheid GeneXpert Carba-R
 - Detection and differentiation of KPC, NDM, VIM, IMP-1, and OXA-48 in 48 minutes
- Whole-genome sequencing

CRE Genotypic confirmatory methods

- Sequencing of entire gene or genome might be needed to differentiate between variants and derivatives
 - For example, to differentiate between OXA-48 (true carbapenemase) and OXA-163 (weak carbapenemase)
- Screening of sequenced genome against a database of known carbapenemase genes using bioinformatics tools
 - Continuously updated tools and databases such as ResFinder, AMRFinderPlus, and CARD
- Both known and unknown variants can be detected with WGS

)?

Post-webinar assignment

- All participants in this webinar will receive an email with a link and brief instructions for the assignment
- 6 cases. Case background provided, and you'll answer related questions.
- Deadline for submitting results: 30th of May 2024
- Should you have any questions or need further clarification, feel free to reach out to us at eqasia@food.dtu.dk

)?

